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Annotation. The article presents a new parallel-distributed approach to speed-up the 

processing of data mining methods implemented to analysis of star energy activities 

database from ESA. This technique uses Gustaffson-Kessel fuzzy clustering procedure to 

perform the effective data distribution and original method to get the most general 

clustering from some generated versions. It’s shown how can increase the performance of 

clustering by presented approach.  

Key words. Parallel-Distributed Clustering. Space Dataset Processing and Analysis. Fuzzy 

Clustering. 

 

Introduction 

The Space Exploration is one of direction of high intellectual complex software 

implementation. The software developing for the space projects needs specific system 

requirements, reliability and performance. The goal of our project is to create such 

software to analyze large-scale datasets that store information about stars features.  

Next year the European Space Agency (ESA) will launch the spaceship to perform 

the project to create a large-scale map of the Universe [1]. It’s called Gaia mission. The 

Gaia spacecraft is going to discover new celestial objects, such as failed stars and extra-

solar planet and to get a lot of information from billiards stars. It’s impossible to analyze 

this dataset receiving from Gaia systems by the standard data mining technique because of 

large scale of the set. The most effective way to explore the data and detect dependencies 

between objects in the set is the usage of parallel-distributed computing techniques to 

increase the performance of intellectual algorithms [2]. However advanced high-

performance hardware to implement such methods needs a new way to computation and it 

needs the transformation of developed software. The more detail our objective is to create 

effective parallel-distributed technique to analyze some generated dataset connected with 

the Gaia project and form clusters of star energy activity features with DBSCAN clustering 

procedure. The table 1 presents an all attributes will be received from space sensors of 

Gaia. 

 

Table. 1 Attribute description 

Attribute 

Name 

Meaning 

log-f1 Log of the first frequency 

log-f2 Log of the second frequency 

log-af1h1-t Log amplitude, first harmonic, first frequency 

log-af1h2-t Log amplitude, second harmonic, first frequency 

log-af1h3-t Log amplitude, third harmonic, first frequency 

log-af1h4-t Log amplitude, fourth harmonic, first frequency 

log-af2h1-t Log amplitude, first harmonic, second frequency 

log-af2h2-t Log amplitude, second harmonic, second frequency 



2 
 

log-crf10 Amplitude ratio between harmonics of the first frequency 

pdf12 Phase difference between harmonics of first frequency 

Varrat Variance ratio before and after first frequency subtraction 

B-V Colour index 

V-I Colour index 

 

DBSCAN Analysis 

Next year we are going to analyze the performance of the software with real datasets. 

But now the real data are unavailable and ESA provides synthetic datasets based on the 

OGLE subset of 2193 objects that are generated by Uninova Institute, Lisbon, Portugal. To 

generate the synthetic datasets, each original row form OGLE was replicated k times and 

Gaussian random noise added; the original dataset characteristics are maintained, as well 

as the overall distribution of the various star types. In table 2 information about synthetic 

datasets is presented: 

 

Table. 2 Synthetic Datasets Description  

Dataset # Instances # Attributes Usage 

Synth43K 43860 13 Validation of clustering quality and 

implementation of algorithm 

Synth-10
5
 100878 13 Scalability performance testing 

Synth-10
6
 1008780 13 Scalability performance testing 

Synth-10
7
 10087800 13 Scalability performance testing 

Synth-10
8
 100878000 13 Scalability performance testing 

 

Although there are many clustering procedures in data mining technology the 

DBSCAN clustering procedure is the most desirable to analyze stars features. The main 

advantage of DBSCAN clustering procedure is that it allows to get clusters with any shape 

[3]. The main problem of this procedure is a cost. By comparison with other techniques 

such as SOM [4] or K-means [5] it works by some digits slower. Hereby we describe the 

transformation of the standard algorithm to achieve higher performance. 

 

  
Fig. 1. Random data distribution of points in the dataset over the communicator 

doesn’t allow to form clusters within process (the number of points to form a cluster equals 

to 5 and the neighborhood is shown) 
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When we use distributed computation it is necessity to split analyzing information 

over nodes in the communicator. The random data scattering is ineffective. Figure 1 

illustrates the random points distribution. To form a cluster the algorithm needs at least 5 

points in the point neighborhood. After random vector distribution there are no such point 

that has more even four points in its neighborhood and each process can’t detect part of 

cluster [6].  

To avoid the problem we have to perform the preclustering to get effective scattering 

the points of dataset or rows [7]. The effective scattering means that all rows to be sent to 

the first process have smaller distances between each other then distances between them 

and rows to sent to the another process. The figure 2 shows the difference between random 

and suggested distributions.  

 

 
Fig.2 Comparison of random distribution of vectors and suggested point lacalization 

distribution. Right distribution lets to create connected clusters in the corresponding 

processes. 

 

To reach this distribution it is necessary to use a sophisticated clustering algorithm 

that allows to generate clusters based on point density and to give additional information 

about membership probability to all clusters.  

 

 
Fig.3 An example of the Gustaffson-Kessel clustering for the dataset. Borders are 

shown for membership functions 0.5 levels. 
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Because of the following reasons such as fuzzy ellipse-shapes cluster generation, 

correlation analysis for each cluster and probability to use membership function value as a 

measure that give useful information about location of each point over detected clusters we 

would like to suggest use Gustaffson-Kessel fuzzy clustering technique to perform this 

scattering. In figure 3 an example of Gustaffson-Kessel clustering implementation is 

shown. We note that the final result depends on algorithm precision and the number of 

cluster that we want to detect. So it’s very important to know the number of clusters. We 

suggest to use the following technique. If there are N multi-core nodes in the 

computational cluster the goal of the preclustering is to detect N interconnected groups of 

points. It’s no matter the number of real clusters is more or less then N. If it’s less then N 

after the DBSCAN procedure we carry the join of clusters out.  

Otherwise some clusters detected by Gustaffson-Kessel technique have several real 

groups of points. Anyway the processing speedup is made. 

 

Algorithm description 

The following algorithm describes some steps to get effective data distribution. 

Step 1. Select N groups of points (each set has 1000 points) to clusterize with 

Gustaffson-Kessel clustering procedure and scatter them over the communicator. 

Step 2. Each process executes Gustaffson-Kessel algorithm and saves centers of 

clusters and covariance matrices. In figure 4 some different clusterings are presented. But 

what clustering from them is the best to split the dataset? Hereby my suggest original 

method to detect the equivalent clusters from different nodes. 

  

 
Fig.4 Four different generated clusterings in the communicator. Hereby some 

examples of the most general clustering are shown. 
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The most distributed clustering in the communicator is called the most general 

clustering. The next steps allow to get it. 

Step 3. Select 1000 random points from the dataset to clusterize them with detected 

clusters and broadcast the set over the communicator. Each process gets this set and finds 

the membership function value for each point in the received message. 

Step 4. The most general clustering search. Analysis the fuzzy matrices that are 

formed for the test set to get equivalence of detected clusters. Select an alternative  from 

the list of equivalent clusterings and broadcast it. 

There are three clusterings in figure 5 and  point distributions in the A-C clusterings 

say that only tha A and C clusterings are similar. After clustering procedures nodes 

detected 4 clusters and gave them IDs. The color in figure means ID. The ID equals to 1, 2, 

3, 4 for the blue, red, yellow and green clusters respectively. Here the red cluster in the A 

clustering looks like red clustering in the B clustering and yellow clustering in the C. 

Circle diagrams show the point distribution in two comparable clusters in different 

processes. When we compare the A and B clusterings all points in the yellow cluster from 

A is distributed within blue and yellow clusters from B.  

 

 
Fig.5. An example of A, B and C clusterings correspondence analysis. There are 

some clusters in the A and B clusterings without equivalents. The A and C clusters have 

very similar results. 

 

We can’t see the A and B the same because the big chunk of yellow cluster in A is 

located the yellow cluster in B. The idea of such comparison is to detect clusters that 

approximately cover each other. 

Step 5. Now all nodes have the best detected clustering and we distribute initial 

dataset equal parts over the processes. 

Step 6. Each process computes the membership function values for the received 

chunk and it sends all points located in the j cluster to the j process. 

Finally, each node has only interconnected points with small distances between each 

other. 
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The next problem is the cluster join. Fuzzy matrices allow to detect points that are 

located at the border of clusters. The membership function values of such points are near 

0.5 for the dominating cluster and a bit less 0.5 for other cluster(s). Hereby to estimate an 

atomic cluster presence between two nodes we should analyze only the distance between 

such points in these processes. It is real good performance achievement because it doesn’t 

have to execute additional computation (everything has computed before yet) and the 

number of boundary points that are satisfied defined condition are much less the number of 

all boundary points and all the more the number of all points in the cluster [8]. 

 

Parallel-distributed processing and experiments 

Usually each node has some cores and the combined usage of them is other 

important way to reach good performance. We recommend to use the multiple thread 

processing for good parallizable matrix operations in the Gustaffson-Kessel procedure, 

such as matrix determinant computation, matrix multiplication, subtraction, etc. During the 

DBSCAN procedure the multiple thread processing is desirable too. It’s possible to  

distribute data over the team of threads like initial data were distributed over the 

communicator. 

We created a C# program to implement the suggested technique and estimate its 

performance. In the program the combination of Message Passing Interface libarary for 

.NET [9] to control distributed computation and parallel libraries in the Microsoft .NET 4 

[10] for internal node computation is used.  

 

 
Fig.6 Performance of the suggested algorithm with different computational cluster 

capacity 

 

The test sets are shown that the performance of suggested technique depends on the 

number of computational nodes and cores. Figure 6 illustrates dependence between the 

number of computational nodes (or cluster capacity) and the execution time with the 

Synth-10
5
 dataset. The test with only one node is performed with single-core 3.4 GHz 

processor and other tests were with TPU computational cluster that has processors with 

similar frequency. It’s clear that suggested technique speed-ups the performance. Standard 
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DBSCAN algorithm is needs approx. 18 min to process 10000 points dataset with then 10 

nodes computational cluster needs just approx. 3 minutes to process such set. 

 

 

Future development  

The suggested technique has also ways to speed-up the processing. Unless the 

chunks of initial dataset to be sent to nodes have the same sizes. It leads that some nodes 

were able to process all points and others are still in process. In this case the nonblocking 

transmission of part of local dataset between overload nodes to free nodes is desirable. It 

balances the load of all parts in communicator and sequentially increases the performance. 

 

Conclusion 

In our work we were going to create a new parallel-distributed approach to speed-up 

performance of ESA dataset processing. We designed the new algorithm that allows 

effective vector distribution into computational cluster nodes based on Gustaffson-Kessel 

fuzzy clustering technique. The algorithm that detects the correspondence between 

different clustering is created. Next the C# program that performs all suggested 

computations is developed and tested. The set of test showed that original algorithm has a 

good prospective to be used with real-world tasks. 
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